Physics 838 Graduate Student Seminar

In 1990, a seminar was initiated for QMC (formerly CNAM/CSR) graduate students in order to present their research to the other students, postdocs, and faculty in the Center. In addition to fostering a rich, collaborative environment in which students learn about the breadth and scope of research being done in QMC, the idea of this series is to teach several crucial skills to our students:

1) How to present their research in a clear and time-efficient way to an audience that was not expert in their area of research;

2) How to best answer questions during their presentations;

3) How to ask good questions when in an audience (or interview), in particular about research beyond their own narrow PhD topic.

In this seminar, students submit formalized feedback to each weekly presenter, providing informative information about presentation style, research content and tips for improvement.

Best Speaker Awards

At the end of each term, a cash prize award is given for the best student and postdoc presentations based on class feedback scores. Previous winners are listed here:

2024 (fall) Jared Erb (student)

2023 (fall) Jared Erb (student), Peter Czajka (postdoc)

2022 (fall) Sungha Baek (student), Keenan Avers (postdoc)

2020 (fall) Shukai Ma 

2019 (spring) Rui Zhang (student), Tarapada Sarkar (postdoc)

2018 (fall) Chris Eckberg (student), Jen-Hao Yeh (postdoc)

2015 Paul Syers, Jasper Drisko

2014 Sean Fackler, Paul Syers,

2013 Kevin Kirshenbaum, Kirsten Burson

2012 Baladitya Suri, Kristen Burson

2011 (fall) Sergii Pershoguba, Ted Thorbeck

2011 (spring) Anirban Gangopadhyay, Baladitya Suri

2010 (fall) Christian J. Long, Tomasz M. Kott

2010 (spring) Tomasz M. Kott, Kevin Kirshenbaum

2009 (fall) Arun Luykx, Jen-Hao Yeh

PHYS838C Seminar: Elliot Fang

Calendar
Physics 838 Seminar
Date
04.14.2025 4:00 pm - 5:00 pm
Location
John S. Toll Room 1201

Description

Title: An angle resolved low temperature thermal conductivity study on Csv3Sb5 


Abstract: Low temperature angle resolved thermal conductivity measurements are useful for probing anisotropies and low energy excitation symmetries as well as identifying nodal structures of unconventional superconductors energy gaps. This talk will mainly revolve around the setup and method involved in these studies as well as how to interpret results from these measurements. In particular, I will be presenting our findings using this method on the Kagome lattice superconductor CsV3Sb5, a material known for its time reversal symmetry breaking charge order state that competes with its superconducting ground state. Our thermal transport results preliminarily show a time reversal symmetry breaking in the superconducting state as well as a validation of its hexagonal symmetry. 



Advisor: Paglione