Semimetalic MoTe2 is an exciting material exhibiting both type-II Weyl nodes and superconductivity. Because broken inversion symmetry is required for the Weyl semimetal phase, the structural phase transition between inversion symmetric (1T’) and nonsymmetric phases (Td) in this material complicates the interpretation of both the topology and the role of superconductivity. A collaboration between NCNR researchers led by Colin Heikes, together with CNAM grad student I-Lin Liu, has combined pressure-dependent neutron scattering, transport measurements, and first-principles calculations to deconvolve the structural phase transformation from the superconducting transition. Unexpectedly, both structural phases support superconductivity, and the authors show that anisotropic strain can be used to control which structure accommodates this pressure-enhanced superconductivity. This work was chosen as an Editor's Suggestion in Physical Review Materials.